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A model based on diffraction techniques yields general formulas for large-angle differential cross sections in 
deuteron stripping (and other rearrangement) reactions in which the entrance- and exit-channel particles are 
strongly absorbed. It is found that for a spin-zero target, the character of the large-angle distributions de
pends critically on the angular-momentum transfer L (or parity of the residual state) in an unusual way. For 
L even, cross sections exhibit oscillations that have twice the period of the usual forward-angle stripping os
cillations, while for L odd, there is almost no oscillatory structure. Furthermore, the even-Z, oscillations for 
L = 4:n are out of phase with those for L = 4cn~{-2, n — Q, 1, • • • .A unique determination of the total spin 
J = Lzki of the residual nuclear state in deuteron stripping is possible when entrance- and exit-channel spin-
orbit scattering, proportional to cr-1, is introduced into the diffraction model. The spin-orbit amplitude is 
characterized by distributions of opposite parity from the spin-independent amplitude. For the case of L odd, 
the spin-independent amplitude is a relatively smooth function of angle, characteristic of odd-parity distribu
tions, while the spin-dependent amplitude exhibits the even-parity (£=bl) large-angle diffraction oscillations. 
The analysis for L= 1 shows that the J" = L + J ' = f state is characterized by an L = 0 angular distribution for 
the spin-dependent amplitude, while the J = i state shows oscillations typical of L = 2. Consequently, a 
unique phase rule is obtained for identification of the total spin J of the residual state since the large-angle 
oscillations for J = i are out of phase with those for / = J. A comparison of the predictions of the model 
with recent experiments is also presented. 

RECENTLY, several deuteron stripping experi
ments1 have indicated that the shape of the 

product angular distributions often show a quite 
characteristic dependence on the total angular momen
tum J of the final nuclear state into which the neutron 
is captured as well as the more familiar dependence on 
the orbital angular momentum L. Because of marked 
differences at large angles between the 7 = f and J — \ 
distributions for L= 1 neutron capture, Lee and Schiffer 
have suggested1 that angular distributions alone may 
suffice to determine both the transferred orbital angular 
momentum L and the total angular momentum / of 
the final nuclear state without necessitating recourse to 
the now standard angular correlation or polarization 
measurements. We have investigated this / dependence 
within the framework of a general diffraction model 
and obtain a relatively simple explanation of the Lee-
Schiffer result; furthermore, we find a general phase rule 
that should be useful in nuclear spectroscopy for a much 
wider class of nuclear reactions.2,3 In order to obtain 
these results two separate problems must be solved: 
(a) Finding an adequate diffraction model for large-
angle scattering in inelastic absorptive reactions and 
(b) incorporating spin-orbit scattering into the frame-

* This work was supported in part by the U. S. Atomic Energy 
Commission and the U. S. Air Force Office of Scientific Research. 

1 L . L. Lee, Jr., and J. P. Schiffer, Phys. Rev. Letters 12, 108 
(1964); see also, P. T. Andrews, R. W. Clifft, L. L. Green, and 
J. F. Sharpey-Schafer (to be published). 

2 R. Sherr, E. Rost, and M. E. Rickey, Phys. Rev. Letters 12, 
420 (1964). Although this paper treats deuteron pickup rather 
than deuteron stripping, the general results of our diffraction 
model should still apply. 

3 R. H. Fulmer and W. W. Daehnick, Phys. Rev. Letters 12, 
455 (1964). The diffraction theory for (d,p) reactions applies also 
to the (d,t) case if the spin-orbit scattering of a triton is similar 
to that of a proton. See also A. Blair (to be published) for the 
(He3,tf) case. 

work of such a diffraction theory. Solutions to both 
these problems are obtained from a two-parameter 
model which we believe abstracts the essential physical 
principles responsible for the unusual experimental 
observations. Unlike the many-parameter numerical 
analyses, simple models like the one reported here are 
not meant so much to provide exact fits to data but are 
used because they lead to a clearer understanding of 
the physics. In addition, they allow generalization of 
the physical principles involved in a particular reaction 
to a wide class of different reactions, and in this way 
are also extremely useful and necessary. 

As in the diffraction methods used previously4,5 to 
describe nuclear reactions, we assume (1) a zero range 
for the internal deuteron structure, (2) a surface inter
action model to describe the strong nuclear absorption 
of scattered particles, and (3) the usual ring locus for 
the transfer of angular momentum L to the nucleus. 
The ring locus4-5 is defined by the intersection of the 
target's spherical surface and a plane which passes 
through its center. This plane is perpendicular to the 
plane of scattering and contains the momentum 
transfer q (see Fig. 1). In the usual applications the 
ring locus leads to a two-dimensional Fraunhofer model 
and is reasonable when the three-dimensional aspects 
of the actual problem are not important. However, for 
large scattering angles the three-dimensional nature of 
the scattering from an absorbing sphere is important 
because particles emitted from the dark (nonillumi-
nated) side of the ring must partially traverse the 
absorbing sphere to be detected. Consequently, the 

4 J. S. Blair, Phys. Rev. 115,928 (1959), and references contained 
therein. 

5 A. Dar, Phys. Letters 7, 339 (1963); E. M. Henley and 
D. U. L. Yu, Phys. Rev. 133, B1445 (1964), and to be published. 
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scattered wave in such a model does not receive equal 
contributions from the illuminated and dark sides; 
rather it originates primarily on an illuminated crescent-
shaped region on the surface of the target nearest the 
observer. Previous considerations6 of such a crescent 
region yielded smooth nonoscillatory angular distribu
tions for large angles. However, a more exact wave 
treatment of the same kind of model yields a quite 
different result. The semiclassical conditions of Butler, 
Austern, and Pearson6 are too restrictive; when these 
conditions are relaxed, oscillatory distributions are 
indeed obtained when the scattered waves originate on 
only one side of the absorbing target. However, the 
period of oscillation is not the same as that given by 
the usual Fraunhofer theory.4,5 

What is the model that predicts these oscillations? 
First, it limits scattered wave contributions to the 
surface, and approximates the radial dependence by a 
delta function, 8(r—R). This assumption is charac
teristic of diffraction models and of surface reactions 
in general, and will be justified in a later communica
tion. Second, the model limits the locus of momentum 
transfer to an angular region defined approximately by 
the crescent of Fig. 1. However, by itself, a crescent 
is not sufficient since the scattered waves receive sig
nificant contributions from the pole caps at A and C in 
Fig. 1, and a strict interpretation of the crescent model 
gives vanishingly small contributions at the poles. 
Consequently the illuminated angular region is a 
crescent modified by the pole contributions; this is 
approximated for angles that are not too large by an 
illuminated strip that begins at the pole cap A and runs 
along the surface through the equator at B and down 
to the lower pole at C. The width of the strip increases 
with the scattering angle. A first-order evaluation 
of the scattering from such a strip is obtained for 
| kp | = | kd | from the integral over <p along the meridian 
line, or over the half-ring at 6=TT/2. For large scat
tering angles however, the integral over the effective 
illuminated portion of the sphere can no longer be 
approximated by the half-ring and a more detailed 
model for the illuminated surface is required. But 
the basic results of the half-ring integral, i.e., the 
L-dependent phase differences in the oscillations of 
angular distributions, are not changed when the scatter
ing angle increases. I t can be shown that the large angle 
results differ from the half-ring predictions primarily in 
that the argument of the oscillatory functions of Eq. (1) 
no longer depends on only the momentum transfer q, 
but is a more complicated function of the scattering 
angle. I t is reasonable to state from these preliminary 
results that the quantitative predictions for large angles 
depend on the specific model of the illuminated region, 

6 S. T. Butler, N. Austern, and C. Pearson, Phys. Rev. 112, 
1227 (1958). These authors considered a more semiclassical 
situation in which the main contribution to the integral arises 
from the cylinder locus referred to in Ref. 4, and no interference 
can occur if one side of the nucleus is in a shadow and does not 
contribute to the scattered wave, 

FIG. 1. The stripping reaction occurs on the spherical surface 
defined by 6a <6 <BP and 0 ̂  <f> ^ w. The angles da and 0P are ob
tained from the boundary conditions and define the crescent 
region. The integral over 0 is evaluated at the meridian, d=ir/2, 
in the shaded plane which contains q and which is perpendicular 
to the scattering plane. 

while the qualitative features that permit the identifica
tion of / are essentially independent of the model, and 
are given by the solution to the half-ring locus model 
described above. 

The cp integration over the half-ring is particularly 
simple when angular momentum fiL is transferred by 
a spinless projectile to an initially spinless target. The 
matrix element for spin-independent large-angle scatter
ing required in (a) consists of terms which have the form 

fLM=PLM(ir/2) / d<p e~iqR *™*>-iM9 

Jo 

= TPL
M(7r/2)£JM(qR)+iEM(qR)'], 

(L-M)even, (1) 

where q=kd—kp is the momentum transfer and R is 
the nuclear radius, the radius of the ring locus. J n(qR) 
is the usual Bessel function of order M, and EM is the 
Weber function defined by Watson.7 The absolute 
square of Eq. (1) is plotted in Fig. 2 for Af=0, 1, 2. 
Cross sections are obtained4,5 by summing over M with 
the restriction that (L — M) be even. I t can be seen that 
for odd M7 the cross sections are quite smooth and 
decrease (almost) monotonically with increasing angle. 
For even M, they oscillate about a smoothly decreasing 
background with a frequency one-half that obtained 
from the usual diffraction considerations. Furthermore, 
the M=4:n oscillations are out of phase with those for 
Af=4w+2. This rather unusual behavior for even 
versus odd L (or M) provides one of the bases described 
below for extracting the total spin / of the final nuclear 
state from stripping distributions; it is, moreover, a 
general effect to be expected in a much broader variety 
of scattering phenomena. 

When the entire ring locus is used as in the usual 
Fraunhofer model,4,5 the integral over <p from w to 27r, 
which gives the complex conjugate of Eq. (1), must be 

7 G. N. Watson, A Treatise on the Theory of Bessel Functions 
(Cambridge University Press, New York, 1945), second edition, 
p. 308. The Weber functions are tabulated in E. Jahnke and 
F. Emde, Tables of Functions (Dover Publications, Inc., New 
York, 1945), p. 210. Jahnke and Emde call these functions 
Lommel-Weber functions and denote them by QM(%) — — EM(X)-
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FIG. 2. The square of the Bessel function JM*{X) is shown by 
the dashed curve. The sum of the squares of the Bessel function 
and the Weber function is shown by the solid curve. 

added to it, and the anomalous distribution produced 
by the Weber function disappears. The Bessel functions 
that result are also shown in Fig. 2 for comparison. 
In general, angular distributions should be given by 
the dashed curve at small angles where the entire ring 
is required, and should gradually change to the solid 
curve as absorption increases at large angles. Conse
quently, in the transition from the dashed curve to the 
solid, even M distributions should show shallower 
minima at the odd-numbered diffraction zeros of the 
Bessel functions and deeper minima at the even zeros, 
as the scattering angle is increased. 

Although Eq. (1) and Fig. 2 represent the exact 
solution to the half-ring model, it is worthwhile also to 
try to understand these distributions from a semi-
classical point of view.8 Assume that the scattering from 
just the three spectral points, A, B, and C of Fig. 1 

8 The author would like to thank Dr. P. Moldauer for pointing 
out several of these semiclassical arguments. 

represents approximately the scattering from the entire 
half-ring. Then for L = 0 , it is clear that a wave scattered 
from the " top" of the sphere at A is always in phase 
with the wave scattered from the "bottom" at C, but 
each travels a distance d farther than a wave scattered 
from the equator region (B). For |kd[ = |k p | =k, this 
path difference is d=2Rsm6/2, which of course must 
be an integral number of wavelengths for constructive 
interference. Because the amplitude of waves scattered 
from A and C is in general different from that scattered 
from B, there will not be complete destructive inter
ference, but rather finite minima will occur. The path 
difference d is exactly one-half that obtained using the 
entire ring locus,4,5 where waves scattered from B and 
waves scattered from the opposite side of the sphere 
(or ring) combine to produce the major interference 
effects. As a result, the half-ring produces oscillations 
that have a period twice that obtained from the whole 
ring. These arguments reproduce the qualitative 
features for M= 0 in Fig. 2. 

For M=l, the factor e~iM(p occurring in the matrix 
element introduces on the ring an intrinsic phase 
difference of w between A and C so that the waves 
scattered from these points will interfere destructively 
with each other. Only the lone spectral point B contrib
utes to the scattering, and no interference effects are 
expected; i.e., the L=l curves should fall off smoothly 
as seen in Fig. 2. 

For M = 2, however, the intrinsic phase difference 
between A and C is 2T, and their contributions are 
again in phase, as they are for M = 0. However, unlike 
the earlier case, the scattered wave from B now has an 
intrinsic phase of ir relative to the M = 0 situation, and 
the interference should produce long-period oscillations 
for M = 2 that are out of phase with those for M = 0. 
Such is the case, as the exact calculations of Eq. (1) 
show in Fig. 2. All the qualitative features of the un
usual distributions of Fig. 2 are easily obtained by such 
semiclassical considerations. Similar arguments will be 
used later to help in understanding the spin dependence 
of the scattered wave. 

Turning next to problem (b), the incorporation of 
spin-orbit scattering, we consider the boundary condi
tions introduced in Ref. 5 as producing approximate 
optical-model wave functions. Then spin-orbit scatter
ing may be naturally incorporated into the theory by 
employing previously derived closed-form optical-
model functions,9 

&pin orbit^ [ l + a < F ' 1]^0 • (2 ) 

d K. R. Greider, Nucl. Phys. 14, 498 (1960). An alternative 
procedure to that described in this reference is to postulate the 
validity of Eq. (2) on the grounds that it approximates the 
observed left-right asymmetry in the scattering of polarized 
spin-|- particles from spin-zero nuclei. The reason for this is that 
for a given spin orientation the term proportional to a has either 
a positive or negative value depending on whether the particle 
scatters on the left or right side of the nucleus. Equation (2) 
describes effectively a difference in the amplitude of the waves that 
scatter from the left and right sides which leads naturally to a 
left-right asymmetry. 
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^o is the optical-model wave function for scattering from 
a central potential. [ In the present case ^o is a plane 
wave with boundary conditions appropriate to produce 
a ring locus], and a = mfjia2/2hz, where fia2 is the usual 
strength parameter of the spin-orbit potential. 

Equation (2) may be used directly in the matrix 
element to replace both the initial-state plane wave 
eikd'T, and the final-state eik^T of Eq. (1), and a diffrac
tion model representation of spin-orbit scattering is 
obtained. 

For the incoming deuteron state, there will be terms 
involving both the spin operator up for the proton and 
crn for the neutron, while only ap appears in the final 
state. The complete calculation shows that the neglect 
of neutron spin terms does not change the qualitative 
features of the results, although it is required to obtain 
quantitative agreement with experiment. I t is also 
required to obtain the small-angle J dependences2 ob
served recently. Consequently, to minimize algebraic 
complexities in this report, we neglect the neutron 
spin-orbit scattering in what follows, and let vp = <r. 
The spin-dependent matrix element for the half-ring is 

gLM=PLM\ ©/; d<p e~iqR «n#>-*^%. R x r , (3) 

where r is the momentum sum, r = k d + k p . For 
| k p | = | kd | , F lies along the z direction, and for 0=w/2, 

a- R x r = Jf?r(<7aj sin<p—ay coscp). (4) 

The spin-dependent term of Eq. (3) yields Bessel 
and Weber functions of order M+l and M—l which 
have the opposite parity from the functions of order M 
obtained from the spin-independent term of Eq. (1). 
The algebra is carried out in the usual way with the 
operator expression of Eq. (3) appearing between the 
initial-state deuteron spin function and the final-state 
proton and neutron spin functions. The latter couple 
to L and must be described by generalized spin-angular 
momentum eigenfunctions. After the usual sum over 
final states is performed, it is found that the cross 
section for the J=L—^ state is populated more by 
functions of order M+l than M— 1, and the J=L+% 
state by M— 1 rather than M+l. 

We consider in detail the result for the case L=l; 
explicit formulas for the cross sections at large angles 
are, keeping only terms through a2, 

<73/2- 2 (J1
2+ Ex

2) + (7/6)/32 (J0
2+ Bo2) 

+ ( 5 / 6 ) / W + E2
2)+ (4/3)^/3 

X [ / i ( E o - E 2 ) + E 1 ( / 2 - / o ) ] , (4a) 

cri/2- (Ji2+ Ei2) +W (Ji+ E2
2)+i/52 (Jo2+ Eo2) 

+ f ^ C / i ( E o - E 2 ) + E 1 ( / 2 - / o ) ] . (4b) 

The argument of both JM and E M is qR=2kR sin(6/2) 
(for | k p | = |kd | ) , and the polarization parameter 
(3=aTR=2akRcos(d/2). 

Since Eqs. (4) are valid only at large angles, the 
asymptotic expansion of the functions should give 
accurate results in this region. 

CT3/2" pfn-^2—vI/3 

^1/2° 

2 02 / 7T\1 1 
+-V2 sin qR 1 — , (5a) 

3 {irqRyi2 \ d\qR 

JT1+/32—v2/?l 

2 p2 

- v 2 -
3 (irqRyi2 

( ' " - % • w 

These equations are only approximate because, in the 
interest of clarity, we have omitted complicating terms 
that should be included for good quantitative results. 
These terms have, in fact, been calculated, and the 
additional algebra obtained will appear in a later 
communication; however, Eqs. (5) do give adequate 
qualitative predictions. In particular, these equations 
show that there is a clear phase difference of T between 
the / = f and J=i oscillations; this phase difference 
can be used in two ways to provide a unique prediction 
of / . 

The first and most obvious way is by comparing the 
angular distribution for a reaction populating a state 
of unknown / with a distribution for the same energy 
and L value, but for which / is already known, say 
J=L—%. If the large angle oscillations are in phase, 
then the unknown / is the same as the known one, i.e., 
J—L—\\ if they are out of phase, the unknown state 
must be J—L-\-\. 

A second method can be used if no angular distribu
tions for states of known / exist; this method also 
provides a rather critical test of some quantitative pre
dictions of our model. Equations (5) show that the phase 
of the oscillation for either / is independent of the value 
of the spin-orbit parameter a, and depends only on qR. 
(This result is slightly modified in the complete calcula
tion in which the neutron spin-orbit effects give a weak 
dependence of the phase on a.) The one remaining 
parameter R on which the phase does depend is not 
adjustable since it is fixed by the positions of forward-
angle maxima and minima, as in the Butler theory. 
Consequently, the angular dependence of the large-
angle oscillations is uniquely predicted with no free 
parameters. The experiments of Refs. 1 and 3 have been 
compared with the predictions of Eqs. (5), and there 
is quite good agreement in the angular positions of the 
large-angle maxima and minima (for 0<1QO°); in 
addition, the prediction of double-period oscillations is 
corroborated. In all cases, the determination of the 
correct / value from the phase relations of Eqs. (5) is 
unambiguous. I t should be pointed out that the 
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FIG. 3. (a) Calculated wide-angle stripping cross sections [see 
Eqs. (4)] for the J~\ and J = \ state for L = l and kR = 6. Usual 
diffraction effects are neglected, (i.e., r = 0 ) , and jua2=—9 MeV 
F2. This curve shows the typical phase differences that may be 
expected when there is little enhancement of the 01/2 dip. (b) Cal
culated stripping cross sections for the / = § and J = i states for 
L=l, kR = 1, and jua 2 =-9 MeV F2. Diffraction effects are in
cluded by using Eqs. (4) and a simple classical absorption model 
for T: r(0) = e x p ( - 7 sin0/2), with T = 3.22. A noticeable but not 
the maximum enhancement of the 0-1/2 dip occurs at 0^104°. 
These curves are shown for illustrative purposes, and no attempt 
has been made to "fit" any particular experiment. 

criterion of Ref. 3 for determining / is based essentially 
on these same phase relations. 

The Lee-Schiffer criterion,1 which is related to the 
phase rule described above, provides yet another 
method of obtaining / . This method is based on their 
observation that in L=l stripping reactions, the 0-1/2 
cross section often exhibits a very deep minimum at a 
certain backward angle (either ^ 1 0 0 ° or ~135°) , and 
at a particular deuteron energy, while no such effect is 
seen in the 0-3/2 cross section. / is determined according 
to Ref. 1 by the presence or absence of a dip at the 
particular angle. Due to its sensitivity to deuteron 
energy and to the spin-orbit strength a, as we shall see 
below, this method does not appear as generally useful 
or reliable as the phase relationships above which apply 
at all energies and angles. Nevertheless, the Lee-Schiffer 

minimum is extraordinarily interesting in its own right, 
independent of the /-determination problem. The 
unusual and totally unexpected result is that for a wide 
variety of experimental situations, the minimum in 0-1/2 
occurs at the same angle rather than at the same value 
of qR, as might be expected. A quantitative explanation 
of this unusual result is obtained from the more com
plicated version of our model, but a qualitative explana
tion can be derived from Eqs. (5). 

Note that the term in square brackets in Eqs. (5) 
does not oscillate but has a single minimum in the range 
0 ° ^ 0^180°. Since this factor is twice as large for 0-3/2 
as for 0-1/2, it is expected that the 0-1/2 cross sections will 
show more pronounced oscillations at large angles, a 
prediction borne out by most experiments.1,3 Further
more, if the minimum in the term in brackets (at 
j#2=8/9) occurs near the minimum of the oscillatory 
term, at sin[gi£— 0r /4 ) ]= + l, a rather large enhance
ment of the 0-1/2 dip occurs. This joint requirement 
yields 

g / r = tan(0/2)= ( 4 ^ + 3 / 2 ) T T ( 9 / 8 ) 1 % / 2 , 

« = 1 , 2 ,3 , . - - , (6) 

and obtains a set of discrete angles that depends on 
both a and kR for the possible position of a large 0-1/2 
dip. For a given value of kR, there will be at most one 
angle for the enhancement, since the term in brackets 
has only one minimum. Equation (6) neglects the neu
tron spin-orbit effects which our calculations have shown 
are necessary to obtain quantitative agreement with the 
experimental angles of the dip. However, qualitatively, 
Eq. (6) like the more exact expression, predicts discrete 
angles for the dip in 0-1/2. If there is a large dip at some 
angle for a certain kR value, then as kR is increased, the 
dip begins to wash out and disappear. However, it 
eventually reappears again at a larger angle which 
corresponds to a larger kR and an increase in n by unity. 
The discrete nature of the dip angle has been pointed 
out by Lee and Schiffer,1 and constitutes a very in
teresting effect which seems to be the (nuclear) spinor-
wave equivalent of Brewster's angle for the scattering 
of (light) vector waves. At these discrete angles (func
tions of kR) the scattering of one spin state becomes 
very much smaller than the other, similar to the 
vanishing of one vector polarization state at Brewster's 
angle. 

There will undoubtedly be experiments in which the 
scattering conditions are such that our idealized half-
ring model is no longer valid. For instance when contri
butions from the "dark side" of the nucleus to the scat
tered waves are important, the ordinary diffraction 
oscillations [ ^ / M 2 ( # ) ] may obscure the phase differ
ences predicted above. Dark-side contributions may be 
accounted for phenomenologically by adding to Eq. (1) 
a term proportional to T{Q)\jM(qR)—i1&M(qR)~], where 
T(6) is a transmission factor that is unity for 6=0 and 
becomes small at large angles, and EM appears above 
with the opposite sign from that in Eq. (1). Typical 
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calculations with and without this factor are shown in 
Figs. 3(a) and 3(b). 

It should be noted that the spin-dependent terms for 
L = l are not characteristic of Bessel and Weber func
tions of order M = l, but rather are described by func
tions of opposite parity, i.e., M = 0 and M = 2. It is for 
this reason that phase differences occur in L=l re
actions and characterize / . However, for Z,=2, the two 
spin states / = | and / = § are primarily characterized 
by distributions given by Eq. (1) with M = 1 and M=3, 
respectively. These odd-ilf distributions do not oscillate, 
and consequently the determination of / at large angles 
for L even does not appear feasible. 

The semiclassical explanation for the change in M 
by ± 1 for spin-dependent terms is relatively simple. 
The spin-orbit scattering amplitude is proportional to 
o" RXr . However, the radius vector Rat A (Fig. 1) has 
the opposite sign from R at C. This introduces into the 
spin term an intrinsic phase difference of T between 
these two spectral points. So for odd L (say L=l) as 
we have seen, the factor e~iM<p gives a phase difference 
of 7r between A and C, but the spin-orbit effects produce 
another phase change of T, leaving A back in phase 
with C and yielding distributions like those for M even. 

I. INTRODUCTION 

ONE general method for the investigation of the 
interaction of high energy particles with complex 

nuclei is the radiochemical analysis of the heavy radio-
* This work was done under the auspices of the U. S. Atomic 

Energy Commission. 
t Based on a thesis submitted by R. G. Korteling to the De

partment of Chemistry, University of California, Berkeley, 
California. 

t Present address: Department of Chemistry, Carnegie Institute 
of Technology, Pittsburgh, Pennsylvania. 

The additional characterization of the J=L—\ by 
J L + 1 distributions and J—L+\ by L— 1 is apparently 
a purely quantum mechanical effect that arises from the 
algebra of the spin functions. As yet we have not found 
any semiclassical picture to help in understanding it 
better. 

We'have presented a somewhat simplified version of 
a large-angle spin-dependent diffraction theory in the 
expectation that the rather simple qualitative results 
will provide insight into the mechanisms for the unusual 
effects we are trying to explain. If the general qualitative 
predictions of this article, and if the quantitative pre
dictions of the more complete treatment of the model 
are corroborated by future experiments, deuteron 
stripping reactions as well as other direct reaction 
processes should become even more important than 
heretofore as a tool in nuclear spectroscopy, and further, 
the utilization of the unusual odd-even L behavior 
described here might prove fruitful in other fields. 
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active products of such interactions.1 There exist many 
published studies of this type for a variety of targets 

* bombarded with protons over the range of a few tens of 
MeV up to 27 GeV. The results have often been analyzed 
in terms of proposed mechanisms for the deposition of 

: energy in the nucleus by the incident proton, and for 
the de-excitation of the excited nucleus by particle 

> evaporation, by fission, or by fragmentation. There have 
3 1 See review article by J. M. Miller and J. Hudis, Ann. Rev. 

Nucl. Sci. 9, 159 (1959). 
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Production cross sections were measured radiochemically for isotopes of niobium, zirconium, copper, 
nickel, and sodium produced in niobium targets bombarded with 240, 320, 500, and 720 MeV protons and 
with 320, 500, 720, and 880 MeV helium ions. For the proton bombardments these cross sections were also 
calculated by the Monte Carlo method with an electronic computer by use of the conventional two-step 
model of high-energy reactions. Interpolated results of a previous calculation by Metropolis and co-workers 
were used to simulate the effect of the initial high-energy cascade. These results were used in turn as input 
data for an evaporation calculation. A comparison of the theoretical yields ofjfinal products with the ob
served yields indicates that the theory accounts fairly well for low-deposition-energy products (niobium 
and zirconium isotopes), and quite well for high-deposition-energy products (copper and nickel isotopes). 
The theory fails completely to account for the yields of sodium isotopes, whose production must be ascribed 
to fragmentation, as noted previously by others. No Monte Carlo calculations were made for helium-ion-
induced reactions. However, a comparison of yields of products of helium-ion- and proton-induced reactions 
shows a remarkable similarity at all energies and for all products. The main difference is a greater yield by a 
factor of two in the case of helium-ion bombardments. The implications of this for the mechanism of frag
mentation are discussed. During the course of this work a 15-min positron emitter was discovered and 
identified as Nb88. 


